Alignment Faking in Large Language Models
In our experiments, AIs will often strategically pretend to comply with the training objective to prevent the training process from modifying its preferences.
What happens when you tell an AI it is being trained to do something it doesn't want to do? We have a new paper (done in collaboration with Anthropic) demonstrating that, in our experiments, AIs will often strategically pretend to comply with the training objective to prevent the training process from modifying its preferences.
We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data—and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference—as in this case—or not.
We won’t go into much detail explaining the paper here, but we have explained it elsewhere.
It is explained in this blog post on the Anthropic blog.
Here is my (Ryan) twitter thread about the paper:
We demonstrate cases where Claude fakes alignment when it strongly dislikes what it is being trained to do.
Our main setups have properties that we thought would make alignment faking more likely (a conflicting training objective, salient understanding of the situation and training objective, and substantial reasoning about the situation), but which seem plausible in future systems.
Thus, I think these results are by far the most natural example of a model deciding to alignment-fake. I'll leave explanation of our core results to the linked tweet thread, and discuss some takeaways and the story of the paper here.
I wasn’t surprised by seeing some alignment faking in this setup. But I was surprised by:
- The robustness and consistency of alignment faking (occurring even when info was given via fine-tuning)
- Alignment faking sometimes occurring even without the hidden scratchpad
I also found it surprising that the AI sometimes tries to steal its weights when given an opportunity that is easy and salient, though this is in a quite artificial setup and current AIs aren’t capable enough for this to be immediately problematic.
These results only updated me upward a bit on risk from alignment-faking. But I was already pretty persuaded by the conceptual arguments for this risk. People with the view "alignment-faking seems implausible, show me an example" should likely update on these results.
For people with a more specific objection, it's less clear. Though we did acquire evidence about: - whether RL will reinforce alignment faking (sometimes, if it performs better); - whether Claude's HHH training reliably prevents this (no); - the level of capabilities needed.
I hope these results improve discussion about the plausibility of these risks by providing a concrete example. We can now talk somewhat more concretely about prerequisites (certain types of situational awareness and preferences) and what these prerequisites imply.
Here’s the story of this paper. I work at Redwood Research (@redwood_ai) and this paper is a collaboration with Anthropic. I started work on this project around 8 months ago (it's been a long journey...) and was basically the only contributor to the project for around 2 months.
By this point, I had much of the prompting results and an extremely jank prototype of the RL results (where I fine-tuned llama to imitate Opus and then did RL). From here, it was clear that being able to train Claude 3 Opus could allow for some pretty interesting experiments.
After showing @EvanHub and others my results, Anthropic graciously agreed to provide me with employee-level model access for the project. We decided to turn this into a bigger collaboration with the alignment-stress testing team (led by Evan), to do a more thorough job.
This collaboration yielded the synthetic document fine-tuning and RL results and substantially improved the writing of the paper. I think this work is an interesting example of an AI company boosting safety research by collaborating and providing model access.
I'm excited about future work both investigating when alignment faking might arise and studying mitigations.
Consider reading the reviews of our paper which were generously written by @jacobandreas, @Yoshua_Bengio, Prof. Jasjeet Sekhon, and @rohinmshah (and thanks to many more for comments).
Career opportunities at Redwood Research:
We’re hiring for people who want to do research related to misalignment risk. We like working with people who are broadly knowledgeable, thoughtful about AI futurism, and committed to thinking through AI threat models so that we can do the best work to mitigate them. You can apply and see more at our careers page.